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Abstract. The most frequently used in physical application diffusive (based on the Fokker-Planck equation)
model leans upon the assumption of small jumps of a macroscopic variable for each given realization of
the stochastic process. This imposes restrictions on the description of the phase transition problem where
the system is to overcome some finite potential barrier, or systems with finite size where the fluctuations
are comparable with the size of a system. We suggest a complementary stochastic description of physical
systems based on the mathematical stochastic storage model with basic notions of random input and
output into a system. It reproduces statistical distributions typical for noise-induced phase transitions (e.g.
Verhulst model) for the simplest (up to linear) forms of the escape function. We consider a generalization of
the stochastic model based on the series development of the kinetic potential. On the contrast to Gaussian
processes in which the development in series over a small parameter characterizing the jump value is
assumed [R.L. Stratonovich, Nonlinear Nonequilibrium Thermodynamics, Springer Series in Synergetics
(Springer Verlag, 1994), Vol. 59], we propose a series expansion directly suitable for storage models and
introduce the kinetic potential generalizing them.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 05.40.-a Fluctuation phenomena,
random processes, noise, and Brownian motion – 05.10.Gg Stochastic analysis methods (Fokker-Planck,
Langevin, etc.)

1 Introduction

One of the aspects of modelling the behaviour of a complex
physical system consists in introducing a random process
capable of describing its essential properties. The most
common (and in practice almost unique) class of stochas-
tic processes where reliable results can be obtained is the
class of Markov processes. Said processes in their turn can
be subdivided into different families. The most widespread
is the model of diffusion process with Gaussian noise su-
perimposing on the macroscopic dynamics. The Poisson
random processes (or “shot noise”) present a second bench
point [1] together with the former subclass covering the
most common physical situations. In the present paper
we bring into consideration the stochastic storage models
based on essentially non-Gaussian noise and treat them
as a complementary alternative to the diffusion approxi-
mation (that is to the Gaussian white noise). We consider
the phase transitions in such models which resemble the
noise-induced phase transitions [1].

The class of stochastic storage models [2,3] presents
a rather developed area of the stochastic theory. As op-

a e-mail: serge shp@yahoo.com
b e-mail: vryazan@kinr.kiev.ua

posed to the common diffusion model [1,4] it contains as
essential part such physical prerequisites: (i) limitation of
the positive semispace of states; (ii) the jumps of a ran-
dom physical process which need not be considered small;
(iii) essentially non-zero thermodynamic flux explicitely
specified by the process of random input.

The following material allows to conjecture that said
models provide more handy facilities of describing the
noise-induced phase transitions than diffusion ones [1].
One of the reasons in favour of this is the fact that typical
probability distributions there are not Gaussian but rather
exponential and gamma-distributions which are charac-
teristic for, e.g., Tsallis statistics. The approach of the
present work is invoked to extend the range of applicabil-
ity of such models. Attempts have already been made to
apply them to the kinetics of aerosol coagulation [5], to
the problems of probabilistic safety assessment method-
ology [6] etc., and to relate these processes to the Gibbs
statistics and general theory of dynamic systems [7]. One
more possible application of the storage models consists
in the possibility of naturally introducing the concept of
the lifetime of a system (the random time of existence of a
given hierarchical level) [2,7–9]. It was shown [7] that the
ambiguity of macroscopic behaviour of a complex system
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and the existence of concurring evolution branches can be
in principle related to the finiteness or infiniteness of its
average lifetime.

It is worth mentioning now that (at least) the simplest
cases of storage models do not require special probabilis-
tic techniques, and corresponding kinetic equations are
treatable by means of the Laplace (or Fourier) transform.
Up to now such models have not gained much recogni-
tion in physical problems. We believe them to be rather
promising especially in the approaches based on modelling
the kinetics of an open system, where the input and re-
lease rates could be set from the physical background. In
the present work we do not intend to cover the variety
of physical situations akin to the storage models. Having
discussed the form of the stationary distributions for a set
of input and release functions (Sect. 2) and their relation
to noise-induced phase transitions we reconsider the for-
malism of the kinetic potential and fluctuation-dissipation
relations (FDR) (Sect. 3) and then pass to the problem
of reconstructing the underlying stochastic process from
the available macroscopic data (Sect. 4). The material of
Section 4 also considers the possibility of generalizing the
classical storage schemes to cover more realistic physical
situations. The concluding Section gives an example of an
application in the context of a practical problem of mod-
elling a nuclear fission process.

2 Storage model as prototype to phase
transition class models

Stochastic storage models (dam models) belong to a class
of models well known in the mathematical theory of
random processes [2,3]. They bear a close relation to
the queuing theory and continuous-time random walk
(CTRW) schemes [10]. The visualization object for under-
standing the physical ground of such a model is a reservoir
(water pool), the water supply to which is performed in
a random fashion. The random value X(t) describing the
bulk amount in a storage is controlled by the stochastic
equation:

X(t) = X(0) + A(t) −
t∫

0

rχ [X(u)] du. (1)

Here A(t) is the (random) input function; r(X) is the func-
tion of output (release rate). Usually deterministic func-
tions r are considered. In the simplest case it is constant:

rχ(X) =
{

a, X(t) > 0
0, X(t) = 0.

(2)

The storage model (1) is defined over non-negative values
X ≥ 0, and the output from an empty system is set to be
zero (2). Therefore the release rate from (1) is written as
a discontinuous function

rχ(q) ≡ r(q) − r(0+)χq, (3)

χq =
{

1, q = 0,
0, q > 0.

(4)

More complicated input functions can be brought into
consideration. Analytical solutions are easy to find for es-
cape rates up to linear [2,3]

r(X) = bX ; r(X) = a + bX. (5)

As to the random process A(t) describing the input into
the system, it can be specified within various classes of
processes. For our purposes a partial case will be of special
interest, namely, that of Lévy processes with independent
increments [2,10]. It can be completely described by its
Laplace transform:

E(exp(−θA(t)) = exp(−tϕ(θ)), (6)

where E(. . . ) means averaging. The function ϕ(θ) is ex-
pressed as

ϕ(θ) =

∞∫

0

(1 − exp(−θx)) λb(x)dx (7)

with

λ = ϕ(∞) < ∞; ρ ≡ λ

∫
xb(x)dx = ϕ′(0);

µ−1 ≡
∫

xb(x)dx =
ϕ′(0)
ϕ(∞)

. (8)

The function b(x) and parameters (8) have a transpar-
ent physical meaning clear from the visualized water pool
picture of the model. Namely, λ describes the intensity of
Poisson random jumps (time moments when there is some
input into the pool), and b(x) is the distribution function
(scaled to unity) of the water amount per one jump with
average value µ−1. Thus, νdx ≡ λb(x)dx is the probabil-
ity distribution of a generalized Poisson process [10] (for
a “pure” Poisson process there were b(x) = δ(x − µ−1)).
For illustrative purposes the typical choice

b(x) = µe−µx (9)

will be considered. In this case the function (7) has the
form

ϕ(θ) =
λθ

µ + θ
. (10)

The parameter ρ gives the average rate of input into a
system representing thus an essentially non-zero thermo-
dynamic flow. The basic property of the stochastic pro-
cess under consideration is thus the violation of the de-
tailed balance (absence of the symmetry of the left- and
rightwards jumps). This intrinsic characteristics makes
them a candidate for the systems essentially deviating
from the equilibrium (locating beyond the “thermody-
namic branch” [1]). From this point of view the thermo-
dynamic equilibrium of a storage model is achieved only
in the degenerate case λ = 0, that is for a system which
occupies only the state X = 0 (of course, the equilibrium
heat fluctuations are thus neglected).
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Another property of the model consists in the finite-
ness of jumps, on the contrast to the custom scheme of
Gaussian Markov processes with continuous trajectories.
Therefore such models can be believed to be more ade-
quate in describing the systems with fluctuations which
can no more be considered small (for example, systems
of small size). We recover however the continuous-walk
scheme setting λ → ∞, µ → ∞ and keeping ρ = λ/µ
finite. In this case the input is performed with an infinite
intensity of jumps of infinitely small size, that is the sys-
tem is driven by a Wiener-like noise process with positive
increments; if we limit the release rate r(X) with linear
terms (5) the process for the random variable then turns
to that of Ornstein-Uhlenbeck [4,11,12], and the storage
model presents its natural generalization. More specifi-
cally, one can introduce the smallness parameter β−1 [in
equilibrium situations with Gaussian noise it would equal
to kT ; generally β accounts for the environment and noise
levels in a system and can be related to the parameter
in the stationary distribution ωst(X) ∼ exp(−βUβ(X))]
such that

λβ = λβ, bβ = βb(βx), ϕβ(θ) = βϕ(θ/β), (11)

from where the Gaussian case is recovered assuming β →
∞; the exponent in the characteristic function (6) acquires
now the form ϕ(θ) = ρθ + θ2σ2/(2β) of the Gaussian pro-
cesses with drift.

It is instructive from the very outset to trace the re-
lation of the present models to the stochastic noise intro-
duced by the Lévy flights as well as to the processes en-
countered in the CTRW. The non-Gaussian stable laws
are described by means of the characteristic function
of their transition probabilities in the form [9,10,13–20]
exp(−tD|k|α) with the Lévy index α, the case α = 2 re-
covering the Gaussian law. The generalized central limit
theorem states that the sum of independent random vari-
ables with equal distributions converges to a stable law
with some value of α depending on the asymptotic be-
haviour of the individual probability distributions [10,18].
In the case of the storage model the characteristic function
ϕ(θ) from (7) [where instead of k there enters θ after an
appropriate analytical continuation in the complex plane]
comes in place of D|k|α. The finiteness of ϕ(∞) ≡ λ indi-
cates that the trajectories of the storage process are dis-
continuous in time. It is understandable that if the func-
tions b(x) from (7, 8) have a finite dispersion, the sum
of many storage jumps will converge to the Gaussian law
with α = 2. From the physical picture of the dam model,
as well as from the analytical expressions like (6) we can
see that the storage models present a class of models where
a mimic of the long-range flights is effectively introduced,
likewise in the Lévy flights, but the nonlocality is achieved
by virtue of the finiteness of allowed jumps. Indeed, the
trajectories of the centered process A(t) − ρt present a
saw-like lines with irregular distribution of the jump sizes.
Only in the limit of big times and scales it can be viewed
as a Wiener process with the variance 〈x2〉 = σ2t with
σ2 ≡ ϕ′′(0). On shorter time scales the behaviour of the

process models the features akin to the superdiffusion (to
the positive semiaxis), and, on the contrary, a completely
degenerated “subdiffusion” to the left since the jumps to
the left are forbidden. In this context the function ϕ(θ)
presents an effectively varying Lévy index which ranges
from the superdiffusive region (0 < α < 2) to negative
meaning suppression of the diffusion. The variable Lévy
index for diffusion processes is encountered in the mod-
els of distributed-order fractional diffusion equations (see
e.g. [16]). Actually, it is possible to bring into consider-
ation from the outset the input fuctions b(x) pertaining
to the “basins of attraction” of other stable distributions
with Lévy indices α �= 2. The storage schemes in which
the functions b(x) themselves are stable Lévy distributions
with power-like asymptotics |x|−α−1 are considered in [3].

The CTRW processes [10,13,17] are characterized by
the joint distribution of the waiting times and jumps of
the variable. The stochastic noise in the storage models is
a narrow subclass of CTRW where the waiting times and
jump distributions are factorized, and the waiting time
distribution is taken in a single possible form ensuring the
Markov character of the process [18]. This suggests a sim-
ple generalization to a non-Markovian case. Namely, as-
suming the storage input moments to be distributed by
an arbitrary law q(t) instead of used q(t) ∼ exp(−λt)
we arrive at generalized CTRW schemes yielding semi-
Markovian processes which can be applied for introducing
the memory effects into a system.

The solution to the models (1–6) can be found ei-
ther with the sophisticated apparatus of the mathematical
storage theory [2,3] or directly by solving the appropriate
kinetic equation (see Sects. 3, 5). A considerable simplifi-
cation in the latter case is achieved in the Fourier space
where up-to linear release rates yield differential equations
of the first order (the situation is similar to the systems
with Lévy flights which are usually treated in the Fourier
space; note also the analogy to the method of the “Poisson
representation” in the chemical reactions problems [12]).

For the constant escape rate (2) all characteristics of
the time evolution of the model are obtained in the closed
form [2]. We mention just for reference for rχ = 1:

∞∫

0

exp(−st)E (exp(−θX(t))|X0) dt =

[exp(−θX0) − θ exp(−X0η(s))/η(s)]
[s − θ + ϕ(θ)]

,

where X0 = X(t = 0), ϕ(θ) the same as in (7) and η(s)
satisfies a functional equation

η(s) = s + ϕ [η(s)], η(∞) = ∞. (12)

However the feature of interest now is the stationary be-
haviour of the models of the class (1). Even for continuous
functions r and b(x) the stationary distributions ωst(X)
besides the continuous part g(X) can have an atom at
zero, that is

ωst(X) = P0δ(X) + (1 − P0)g(X), (13)
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where g(X) is a probability distribution scaled to 1, and
P0 = limt→∞ P (X(t) = 0). The integral equation for g(X)
from [3] reads as:

r(X)g(X) = P0ν(X,∞) +
∫ X

0

ν(X − y,∞)g(y)dy (14)

with the measure ν(x,∞) ≡ λ
∫ ∞

x b(y)dy. For the expo-
nential shape of the input function (9) for which ν(x,∞) =
λ exp(−µx) the equation (14) can be solved for arbitrary
release functions r(X) > 0 (C is found from the normal-
ization condition):

g(X) =
C exp

(
−µX + λ

∫
dX

r(X)

)

r(X)
. (15)

The condition of the existence of the stationary distribu-
tions for arbitrary input and release functions from [3] is
the existence of some w0 such that

sup
w≥w0

∞∫

y=0

w+y∫

u=w

du

r(u)
ν(dy) < 1. (16)

Similarly the expression for P0 can be written for the gen-
eral case [3]. There is a simple relation

P0 =
[
1 +

∫ ∞

0

〈Γ (x)〉ν(dx)
]−1

,

between the weight of the zero atom P0 and the average
lifetime 〈Γ (x)〉 (averaged random time of attaining the
zero level starting from a point x). The presence of the
non-zero P0 indicates at the existence of idle periods where
no elements are present in a system. Such periods can be
characteristic for systems of the small size (in which the
values of fluctuations of a macrovariable are comparable
to their averages) [8] and must influence essentially the
statistical properties of a system, for example, they impose
limitations on the maximal correlation time.

The behaviour of the models (1) admits a pronounced
property of nonequilibrium phase transitions (change in
the character of the stationary distribution) which occur
when one increases the value of the average thermody-
namic flow (parameter λ). The phase transition points can
be explored by investigating the extrema of the station-
ary distribution (cf. the analysis of noise-induced phase
transitions in [1]), that is for the case of (15) — from the
condition µr(X) = λ − dr(X)/dX . For example, for the
model with constant escape rate r = a we get two types of
solutions: converging solution for small input rates and the
pool overflow (no stationary solution exists) if the average
input per time unit exceeds the output rate. The criterium
for the phase transition (16) in this case reads simply as
ρ = a. If ρ > a, no stationary distributions are possible.
For ρ < a the stationary distribution possesses addition-
ally an atom δ(X) at X = 0 with the weight P0 = 1−ρ/a.
Explicitly for (9) and r = 1 the stationary distribution
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Fig. 1. Stationary distribution function (18) in the storage
model with r(X) = bX. Phase transition with increasing input
intensity λ.

ωst(X) for ρ ≡ λ/µ < 1 is:

ωst(X) = P0δ(X) + (1− P0)(µ− λ)e−(µ−λ)X, P0 = 1− ρ.
(17)

Consider now the exit function r(X) = bX, b > 0 and the
input in the form (9). This storage system does not have
an atom at zero, and the stationary probability distribu-
tion exists for all input rates — there is no overflow in the
system:

ωst(X) = µλ/bXλ/b−1 exp(−µX)/Γ (λ/b) (18)

(Γ (λ/b) is gamma-function). The phase transition is the
modal change of the distribution function, which occurs at
λ = b, where the distribution changes its character from
the exponential (∼exp(−X)) to Gauss-like with a maxi-
mum at X > 0 (Fig. 1). This peculiarity of the station-
ary distribution can be interpreted as a non-equilibrium
phase transition induced by external fluctuations. Such
transitions are typical [1,21] for the multiplicative type
of noise. They do not have their deterministic analogue
and are entirely conditioned by the external noise. The
phase transition at λ = b manifests in the emerging of the
nonzero maximum of the distribution function although
all momenta of the distribution change continuously. As
in the Verhulst model [1] the phase transition at λ = b
coincides with a point in which [D(X)]1/2 = E(X), where
D(X) is the dispersion, E(X) is the first moment of the
distribution. With the choice of the input function in the
form b(x) = 4µ2x exp(−2µx) the stationary distribution is

ωst(X) = exp(−λ/b)(−λ/b)(1−λ/b)/2

× X(λ/b−1)/2Jλ/b−1[2
√
−λX/b]

(J is Bessel function). The behaviour of the distribution is
qualitatively the same as in Figure 1 with the phase transi-
tion point at λ = b as well. In both cases we have the phase
transitions which are caused by an additive noise (which
does not depend on the system variable). The existence of
phase transitions for the additive noise is closely related
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to the long-range character of the distribution function
of the noise and such transitions were discovered in sys-
tems with, e.g. Lévy type of additive noise [9,14] where
the structural noise-induced phase transitions are condi-
tioned by the trade-off between the long-range character
of the flights and the relaxation processes in the model.
Analogous conclusions for other types of superdiffusive
noises are also drawn in [20,21] etc. We can thus state that
the effective long-rangeness in the storage models leads to
similar effects causing the modal changes of the distribu-
tion function which can be interpreted as a nonequilibrium
noise-induced phase transition.

More complicated example is the rate function r(X) =
a + bX and the input rate (9). In this case

ωst(X) = P0

[
δ(X) +

λ

b
a−λ/b exp{−µX}(a + bX)λ/b−1

]
,

P−1
0 = 1 + (µa/b)−λ/b(λ/b) exp{µa/b}Γ (λ/b; µa/b)

(Γ (x; y) is incomplete gamma-function). It combines two
previously considered models: there is an atom at X = 0
with weight P0 and there is the phase transition at criti-
cal λ where the distribution switches from exponential to
Gaussian-like. This critical value is λcr = aµ+ b. If b → 0,
it coincides with that for the model r = a, and if a → 0 -
with the results of r = bX model (18).

For a realistic release function r(X) = bX − cX2(1 −
X), (c, b ≥ 0) corresponding to, for example, the nonlin-
ear voltage-current characteristics, the solution to (14) for
exponential input (9) (expression (15)) yields [in this case,
like for the linear model r = bX , P0 = 0]:

g(X) =
N exp(−µX)(X + c)λ/b

(bX − cX2 + cX3) | cX2 − cX + b |λ/2b

× exp

(
λc

2b
√

c | c − 4b | arctan
c(2X − 1)√
c | c − 4b |

)
, c < 4b

(we consider the case c < 4b only because natural restric-
tions on the drift coefficient impose r(X) > 0 [3]). The
phase transition points can be explored from the custom
analysis of the value of the corresponding cubic determi-
nant Q. The number of phase transitions varies from one
(Q > 0) to three at Q < 0 depending on the relations be-
tween µ−1, b/c, and λ/b. This latter example can be com-
pared to the nonequilibrium regimes found in the quartic
potential well driven by an additive Lévy-type noise [14,
15]; as in the above systems the additional criticality is
achieved due to a long-range character of the additive
noise.

The distribution functions and phase transitions in this
class of models are common to various physical systems.
Relative simplicity in mathematical treatment allows us to
propose them as a handy tool for modelling physical phe-
nomena of stochastic nature. We will show that this class
of models based on the Poisson noise presents a prototype
for stochastic modelling complementary to the commonly
considered Gaussian noise. This latter, as the simplest case
of phenomenologically introduced stochasticity, became in

fact the most recognized way of introducing noise, and var-
ious enhancements of stochastic description meant merely
an extension of the Langevin source of a Gaussian nature
introducing the small parameter of jumps value (see later
in Sect. 4). The use of the Poisson noise, starting from
the storage model as its basic case, allows an extension
to more complicated cases as some regular development
series in a small parameter as well. In contrast to the
Gaussian scheme, it does not require at the very beginning
the smallness of jumps thus it is able of describing more
adequately a wide class of physical phenomena where this
assumption does not have its physical justification. As an
example we mentioned a thermodynamic system of a small
size, where the random value is the number of particles.
The Gaussian assumptions are valid only for large size
(in comparison to the rates of input or output) of a sys-
tem, when the diffusion approximation can be used. The
smaller is the system, the worse is the description in terms
of minor random jumps (basic for Gaussian scheme), and,
vice versa, more reliable becomes the description based on
the Poisson character of a random process.

3 Fluctuation-dissipation relations
and formalism of the kinetic potential

This section is a brief reminder of the formalism of the ki-
netic potential [22] which is appropriate for presenting the
properties of a Markovian random process in a compact
form.

The primary concept of the Markov process is the tran-
sition probability for a random value B to jump from the
initial state B1 at the time moment t1 into state B2 at t2,
that is the probability ω21 ≡ ω(B2, t2|B1, t1). The idea of
Markovian behaviour imposes obvious restriction on the
values ω21, so that they possess a superposition property∫

ω32(B|B′)ω21(B′|B′′)dB′ = ω31(B|B′′), (t1 < t2 < t3);
in other words, form a continuous semigroup in time (the
reverse element of this group for dissipative processes is
not defined), so that all characteristics of a system can be
derived from the infinitesimal generators of the group. In
normal language, we bring into consideration the proba-
bilities per time unit (1/τ)ω(B + ∆, t + τ |B, t) (τ → 0).
To characterize this function it is useful to consider its
moments which are called “kinetic coefficients”:

Kn(B, t) ≡ lim
τ→0

1
τ

∫
ω(B + ∆, t + τ |B, t)∆nd∆. (19)

The stationarity of the Markov process assumes that Kn

are time-independent. The kinetic equation for the distri-
bution function of the process reads as [4,11,22]

∂ω(B, t)
∂t

=
∞∑

n=1

(
− ∂n

∂Bn

)
Kn(B)

n!
ω(B, t); (20)

ω(B, t) =
∫

ωtt1(B|B′)ωt1(B
′)dB′.
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The kinetic potential is defined as the generating function
of the kinetic coefficients [22]:

V (−θ, B) ≡
∞∑

n=1

Kn(B)
(−θ)n

n!
. (21)

Thus the kinetic coefficients can be expressed as

Kn(B) =
∂n

∂(−θ)n
V (−θ, B)|θ=0 (22)

for n = 1, 2, . . . With (21) the equation (20) can be written
compactly:

∂ω(B, t)
∂t

= N∂,BV

(
− ∂

∂B
, B

)
ω(B, t). (23)

In (23) the notation N∂,B means the order of the differen-
tiation operations: they should follow all actions with the
multiplication by Kn as it is seen from (20).

An example of the kinetic potential for the simplest
and most utilized stochastic process is

V (−θ, B) = K1(B)(−θ) +
1
2
K2(B)θ2. (24)

With the choice K1(B) = −b · B, K2(B) = D = const.,
Kn>2 ≡ 0 the corresponding kinetic equation is then the
Fokker-Planck equation for the Orstein-Uhlenbeck pro-
cess [4,11] which describes a system with linear relaxation
towards the stationary solution in the Gaussian form

ωst(B) ∼ exp
(
−bB2

D

)
.

Note that the kinetic potential for a process driven by a
Lévy flight noise has thus the generic form V (−θ, B) =
−θK1(B) + Dθα and assumes the kinetic equation of the
formally fractional order which is not reduced to the series
in (20); one uses instead its plausible generalization which
can be encountered elsewhere (e.g., [13,17–20] etc.).

As another example we write down the form of the
kinetic potential for the class of storage models of Sec-
tion 2. The kinetic potential V (−θ, B) through the tran-
sition probabilities of a Markov process is written as

V (−θ, B, t) = lim
τ→0

1
τ

[
E

(
e−θ(X(t+τ)−X(t)) | X(t)

)
− 1

]
;

E
(
e−θ(X3−X2) | X2

)
=

∫
e−θ(X3−X2)ωt3t2(X3 | X2)dX3

= E(e−θX3 | X2)E(eθX2), (25)

where Xk = X(tk). Inserting there the Laplace transform
of the random value from (1), we obtain [7], for an ele-
mentary derivation see Appendix:

V (−θ, B) = −ϕ(θ) + θrχ (B), (26)

where ϕ is defined in (7), and rχ(B) in (3, 4).

It is handy to introduce another generating function
called the “image” of the kinetic potential [22]. Namely,
let ωst(B) be the stationary solution ω̇ = 0 of the kinetic
equation (20). The image of the kinetic potential V is
defined as

R(y, x) ≡
∫

exp(xB)ωst(B)V (y, B)dB∫
exp(xB)ωst(B)dB

(27)

or, in the notation of the transition probabilities,

R(y, x) ≡ lim
τ→0

1
τ
×

∫ ∫
dB1dB2 exp(xB1)

×
[
exp(y(B2−B1))−1

]
ω(B2, t + τ |B1, t)ωst(B1)∫

exp(xB)ωst(B)dB
. (28)

The series of R(y, x) over y:

R(y, x) =
∞∑

n=1

κn(x)
yn

n!
(29)

defines new coefficients κn(x) being the image of Kn:

κn(x) =
∫

Kn(B)ωst(B) exp(xB)dB∫
ωst(B) exp(xB)dB

. (30)

We note by passing that the variable x in (27) or (30),
presenting merely a variable over which the Laplace trans-
form of the process variables is performed, can be also un-
derstood as a (fictive or real) thermodynamic force. This
interpretation is clarified when we look at the “pseudo-
distribution” exp(xB)ωst(B) where xB stands for an
amendment to the free energy of a system [22].

The reconstruction of a stochastic random process
assumes that knowing macroscopic information about
system we make plausible assumptions as to the fluctu-
ating terms of the kinetic equation, that is we try to con-
struct the matrix of the transition probabilities ωij in any
of equivalent representations (19), (21) or (27) leaning
upon some macroscopic information about the random
process. As the latter, we can understand the following
two objects: (1) the stationary distribution ωst(B); and
(2) “macroscopic” equations of motion which are usually
identified with the time evolution of the first momenta
of ω(B, t) and hence the kinetic coefficient K1(B) (in the
case of the sharp probability distribution where one can
identify the “macroscopic variable” at all). For example,
for the storage model scheme the problem is inverse to
that considered in Section 2: knowing the macroscopic re-
laxation law and the shape of the stationary distribution
we then try to reconstruct the input function ϕ(θ). The re-
laxation law is given by the balance of the averaged input
and release rate ρ − r(X) (in the present class of storage
models the input rate is X-independent, the generaliza-
tion is considered further). Then, given r(X) one can set
into correspondence to it the input function ϕ(θ) yielding
a given distribution ωst(X):

ϕ(θ) = θ

∫
r(X)ωst(X) exp(−θX)dX∫

ωst(X) exp(−θX)dX
. (31)
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The relations between said objects and the remaining part
of the stochastic information contained in the process are
called fluctuation-dissipation relations (FDR). These re-
lations express the property of time reversibility of the
transition probabilities (detailed balance). In the repre-
sentation of the image of kinetic potential (27), (28) they
are written in the most elegant fashion [22]:

R(y + x, x) = R(−εy, εx), (32)

where ε = ±1 according to the parity of the variable. The
particular case of the FDR in the form (32) at y = 0
represents the “stationary” FDR

R(x, x) = 0. (33)

The FDR in the form (33) hold for any system in the
stationary state with no assumption about the detailed
balance, that is the system needs not to be in the equilib-
rium state. Indeed, it is easy to check that (33) is just an
another notation of the equation for the stationary distri-
bution N∂,BV (−∂/∂B, B)ωst(B) = 0 (see Appendix A).

4 Reconstruction of the random process

The problem of reconstructing a random process in the
notations of the preceding section is formulated as a set
of algebraic equations for a function R(y, x). Thus, given
functions κ1(x) and ωst(B) we must find R(y, x) which
identically satisfies the relation (32) (for the system in
equilibrium) or (33) (for the stationary system with no
assumption about the thermal equilibrium and detailed
balance). The problem, of course, has many solutions
since those conditions do not define the function R
uniquely. There exists the “FDR-indeterminable informa-
tion” which hence should be borrowed from some addi-
tional criteria to be imposed on the equations in order to
close the problem, which means confining ourselves within
some class of the stochastic processes. The kinetic poten-
tial representation allows us to elucidate clearly the nature
of the approximations made.

4.1 “Gaussian” scheme

The standard reconstruction procedure considers the pos-
sibility of setting the “FDR-indeterminable” functions
negligibly small, that is introducing a small parame-
ter over which the kinetic potential can be developed
in series [11,22]. Thus the generalization of the “bare
Gaussian” model showed in the example above (24) is
achieved. In the series

V (y, B) = K1y + K2
y2

2!
+ K3

y3

3!
+ . . .

successive coefficients Kn decrease progressively as β1−n.
This relation can be expressed introducing the family of
kinetic potentials labelled by the large parameter β [22]
(compare with (11))

Vβ(−θ, B) ≡ βV (−θ/β, B). (34)

This is a common approximation for a random process
consisting in the fact that its jumps are small. If we keep
only two terms K1 and K2, the second coefficient for one
variable can be restored from FDR exactly. As an example,
we write the kinetic potential reconstructed up to 4th or-
der (from the formula (32) applying development in the
powers of y):

Rg(y, x) = yκ1(x)
(
1 − y

x

)
+ y2(y − x)2

κ4(x)
4!

,

where the coefficient κ4(x) is arbitrary (indeterminable
from FDR). The first term describes the base variant cor-
responding to (24).

4.2 “Storage” scheme

The assumption of small jumps leads to the possibility
to neglect the higher order kinetic coefficients Kn, con-
structing a stochastic process by the “Gaussian” scheme
(G-scheme). We suggest an alternative approach which
can be regarded as complementary to the G-scheme and
does not require the assumption of the small jumps. Like
G-scheme, it has its basic variant which is well treatable
mathematically.

We assume now that the kinetic coefficients Kn(B) are
expandable into series over the variable B:

Kn(B) = kn,0 + kn,1B + kn,2
B2

2
+ . . . kn,l

Bl

l!
. . . (35)

Possibility of truncating these series implies that kn,l in
(35) contain a small parameter γ which decreases them
progressively with the growth of the number l: kn,l ∼ γl

for n = 2, 3, 4, ... In the coefficient K1(B) determining the
macroscopic evolution we however keep the macroscopic
part rχ(B) whose development on B does not depend on
γ: K1(B) = −rχ(B) +

∑
k1,lB

l/l!.
The image of the kinetic potential thus turns out to

be a development into series

R(y, x) = −yrχ(x) −
∞∑

l=0

1
l!
〈Al(x)〉ϕl(y), (36)

here

rχ(x) =
∫

rχ(B)ωst(B) exp(xB)dB∫
ωst(B) exp(xB)dB

,

〈Al(x)〉 ≡
∫

Blωst(B) exp(xB)dB∫
ωst(B) exp(xB)dB

,

and ϕl are defined through coefficients in (35):

−ϕl(y) ≡
∞∑

n=1

yn kn,l

n!
, l = 0, 1, 2, . . .

The series (36) can be considered as a development on
the base {1, 〈A(x)〉, 〈A2(x)〉, . . . } which is a natural base
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of the problem following from the peculiarities of its sta-
tionary distribution. The coefficient ϕ0(y) at y = −θ has
the same meaning as the function ϕ from (7) and trun-
cating (36) up to it reproduces the storage scheme of
Section 2. This is a generalization referring to the mul-
tiplicative noise processes dX(t) = −rχ(X)dt + dA(t; B)
instead of (1) with the characteristics function of the noise
E(exp(−θA(t))) = exp(−t[ϕ0 +Bϕ1 + . . . ]) instead of (6).

From the equation R(x, x) = 0 applying it to (36)
we obtain the reconstructed scheme for a random process
(“S-scheme”):

Rs(y, x) = −
∞∑
l=0

1
l!
〈Al(x)〉

[
ϕl(y) − y

x
ϕl(x)

]

= −y
(
rχ(x) − rχ(y)

)
−

∞∑
l=1

1
l!

ϕl(y)
(〈Al(x)〉 − 〈Al(y)〉).

(37)

Keeping in mind that the coefficient κ1(x) is supposed to
be known the last expression can be rewritten as

Rs(y, x) = yκ1(x)
(

1 − κ1(y)
κ1(x)

)

−
∞∑

l=1

1
l!

ηl(y)
(〈Al(x)〉 − 〈Al(y)〉). (38)

The coefficients ηl(y) at l = 1, 2, . . . are dissipative-
indeterminable. They are given by

ηl(y) = −
∞∑

n=2

ynkn,l/n! ≡ ϕl(y) − yϕ′
l(0).

If we set ϕl = 0 for l = 1, 2, . . . in (36–38), we recover
the kinetic potential of the ordinary storage model (26)
which can be restored from the stationary distribution
exactly. The above formula (31) is a particular case of
the application of this scheme.

5 Conclusion: An example of possible
application

Both schemes sketched above — that is the common
G-scheme and suggested complementary S-scheme of
the stochastic reconstruction both lean upon two basic
stochastic models which use respectively the assumption
of Gaussian and Poissonian nature of the random noise.
They both apply the series development of the kinetic po-
tential on a small parameter. Keeping infinite series leads
to identical results in both cases. However, in real physical
problems we use to truncate the expansion series keeping
small finite number of terms. According to the physical sit-
uation and to the nature of the random noise either one,
or another scheme would give a more reliable convergence.

Consider now an example of the storage model with
the linear release rate r = bX (5) and generalized input

which is now X-dependent (Sect. 4.2). Find the solution
of the simplest linear dependence of the input function on
X with the kinetic potential (21) set as

V (−θ, X) = −ϕ0(θ) + θbX − cXϕ1(θ). (39)

The first two terms in (39) describe the usual storage
model with linear release, and the last term is the amend-
ment to the input function proportional to X (cf. (35, 36)).
The parameter c controls the intensity of this additional
input. The equation for the Laplace transform F (θ) ≡
E(exp(−θX)) of the stationary distribution is V (−θ, X →
d/dθ)F (θ) = 0, where the differentiation refers only to the
function F . Its solution for V in (39) is

− log F (θ) =

θ∫

0

ϕ0(u)du

bu − cϕ1(u)
. (40)

For illustration specify now the input functions as

ϕ0(θ) = ϕ1(θ) =
λθ

µ + θ
, (41)

which correspond to the exponential distribution functions
of input jumps (7, 9) b0,1(x) = µ exp(−µx). Then

F (θ) =
(

1 +
θ

µ − cλ/b

)−λ/b

. (42)

Comparing to the solution of the storage model c =
0 shows that the additional term leads to an effective
decrease of the parameter µ → µ − cλ/b. The sta-
tionary probability distribution is given by the gamma-
distribution function

ωst(X) = (µ − cλ/b)λ/bXλ/b−1e−X(µ−cλ/b)/Γ (λ/β).

The stationary solution exists if µ − cλ/b > 0, otherwise
the system undergoes the phase transition with the system
overflow likewise for the model with constant release rate.
If c < 1 there are two phase transitions (increasing λ),
first of which is that of the model (18) (Fig. 1) and the
second is the system overflow at 1− cρ/b = 0. If c > 1 the
overflow occurs earlier than the condition λ = b meets and
qualitatively the behaviour of the system is similar to that
of constant release rate (2), with the transition condition
cρ/b = 1 instead of former ρ = a.

Now let us sketch an example of application of the gen-
eralized storage scheme for the problem of neutron fission
process. Set the generating function ϕ1(θ) in (39) in the
following form

ϕ1(θ) = λ1

[
1 −

∞∑
k=0

πk exp(−θk)

]
,

∞∑
k=0

πk = 1,

here
∑∞

k=0 πkzk is the generating function of the neu-
tron number distribution per one elementary fission act
(z = exp(−θ) for a discrete variable); πk are probabilities
of emerging k secondary neutrons (discrete analogue of
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the function b(x) in (7)); λ1 is the fission intensity (prob-
ability of a fission act per time unit), λ1 = 〈v〉Σf with
average neutron velocity 〈v〉 and macroscopic fission cross
section Σf [23]; further, b = 1/lef , lef is the average neu-
tron lifetime till the absorption or escape [23]. Let us set
c = 1 and assume that the function ϕ0(θ) accounts for the
external neutron source with intensity q ≡ ∂ϕ0(θ)/∂θ|θ=0

(the smallness parameter γ in (35) now describes the rela-
tion λ1/λ0 of the intensities of fission and external source
events). This probabilistic model is essentially the same
as in the example of the generalized storage scheme (39)
sketched above. From (23, 39)

∂ log F (θ)/∂t = {−ϕ0(θ) − [θb − ϕ1(θ)]∂/∂θ} log F (θ),

that is we arrive at the equation for the distribution func-
tion of the prompt neutrons in the diffusion single-velocity
approximation. The macroscopic equation for the averages
〈N〉 = −∂ log F (θ)/∂θ|θ=0 is

d〈N〉
dt

= [〈v〉〈ν〉Σf − 1/lef ] 〈N〉 + q

[23] and coincides with that obtainable a priori from the
stochastic storage model. The neutron reproduction factor
is defined as k = λ1〈ν〉/b = 〈ν〉〈v〉Σf lef [23], where 〈ν〉 =
λ−1

1 ∂ϕ1(θ)/∂θ|θ=0 is the average number of secondary
neutrons per one fission act. The expression for the gener-
alized storage model phase transition λ1〈ν〉/b = 1 corre-
sponds to the reactor criticality condition k = 1. Extend-
ing probabilistic schemes in (39) beyond the toy model
considered here and introducing vector (multi-component)
stochastic processes allows for taking into account the de-
layed neutrons, as well as various feedbacks and control-
ling mechanisms.

Appendix A: Derivation of the relations (26)
and (33)

Here we sketch the elementary derivations of the expres-
sions in the text describing the kinetic potential of the
storage model (expr. (26)) and that of the stationary FDR
through the image of the kinetic potential (expr. (33)).
The more rigorous and generalizing derivations can be
searched elsewhere, resp. [2,3,7,22].

A.1 Kinetic potential of the storage model

From (1) and (25) using the fact that the input rate is a
random process independent on X(τ) (to simplify nota-
tions we set the initial moment t = 0):

1
τ

E
(
e−θA(τ)+θ

∫
τ
0 rχ[X(u)]du − 1

)
	

1
τ

{
E

(
e−θA(τ)

)
E

(
1 + θ

∫ τ

0

rχ[X(u)]du

)
− 1

}
.

Then, using (6) and taking τ → 0,

V (−θ, B) = −ϕ(θ) + θ lim
τ→0

1
τ
〈
∫ τ

0

rχ[X(u)]du〉.

The last term of this expression gives θrχ[X ] + O(τ) in
the limit τ → 0 provided that the intensity of jumps is
finite which is the case of the considered class of Poisson
processes.

A.2 Stationary FDR

We limit ourselves to the nonequilibrium FDR relation
only. For a general case of the detailed balance, as well as
for the generalization to non-Markov processes, the reader
is referred, e.g., to the book [22].

The stationary Fokker-Planck equation is written as

N∂,BV

(
− ∂

∂B
, B

)
≡

∞∑
n=1

1
n!

(
− ∂

∂B

)n

Kn(B)ωst(B) = 0.

(43)
Perform over (43) the operation

∫
exp(xB)(·)dB. Use the

relation

∫
exB

(
− ∂

∂B

)n

f(B)dB = xn

∫
exBf(B)dB

for some f(B) which can be verified with recursive inte-
grations by parts (the terms with full derivation vanish
at B = ±∞; if the space of states is a semiaxis as in the
storage models, the integration

∫ ∞
0− including the atom in

0 is assumed). Then,

(43) ⇒
∫

exBωst(B)dB

( ∞∑
n=1

1
n!

xnKn(B)

)
∼ R(x, x) = 0.

(44)
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